Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair.
نویسندگان
چکیده
The Bloom syndrome gene product, BLM, is a member of the highly conserved RecQ family. An emerging concept is the BLM helicase collaborates with the homologous recombination (HR) machinery to help avoid undesirable HR events and to achieve a high degree of fidelity during the HR reaction. However, exactly how such coordination occurs in vivo is poorly understood. Here, we identified a protein termed SPIDR (scaffolding protein involved in DNA repair) as the link between BLM and the HR machinery. SPIDR independently interacts with BLM and RAD51 and promotes the formation of a BLM/RAD51-containing complex of biological importance. Consistent with its role as a scaffolding protein for the assembly of BLM and RAD51 foci, cells depleted of SPIDR show increased rate of sister chromatid exchange and defects in HR. Moreover, SPIDR depletion leads to genome instability and causes hypersensitivity to DNA damaging agents. We propose that, through providing a scaffold for the cooperation of BLM and RAD51 in a multifunctional DNA-processing complex, SPIDR not only regulates the efficiency of HR, but also dictates the specific HR pathway.
منابع مشابه
FIGNL1-containing protein complex is required for efficient homologous recombination repair.
The RAD51 recombinase plays a central role in homologous recombination (HR), which is critical for repair of DNA double-strand breaks, maintenance of genomic stability, and prevention of developmental disorders and cancer. Here, we report the identification of an RAD51-binding protein fidgetin-like 1 (FIGNL1). FIGNL1 specifically interacts with RAD51 through its conserved RAD51 binding domain. ...
متن کاملDefining the roles of the N-terminal region and the helicase activity of RECQ4A in DNA repair and homologous recombination in Arabidopsis
RecQ helicases are critical for the maintenance of genomic stability. The Arabidopsis RecQ helicase RECQ4A is the functional counterpart of human BLM, which is mutated in the genetic disorder Bloom's syndrome. RECQ4A performs critical roles in regulation of homologous recombination (HR) and DNA repair. Loss of RECQ4A leads to elevated HR frequencies and hypersensitivity to genotoxic agents. Thr...
متن کاملProtein Degradation Pathways Regulate the Functions of Helicases in the DNA Damage Response and Maintenance of Genomic Stability
Degradation of helicases or helicase-like proteins, often mediated by ubiquitin-proteasomal pathways, plays important regulatory roles in cellular mechanisms that respond to DNA damage or replication stress. The Bloom's syndrome helicase (BLM) provides an example of how helicase degradation pathways, regulated by post-translational modifications and protein interactions with components of the F...
متن کاملRoles of the Bloom's syndrome helicase in the maintenance of genome stability.
The RecQ family of DNA helicases is highly conserved in evolution from bacteria to humans. Of the five known human RecQ family members, three (BLM, WRN and RECQ4, which cause Bloom's syndrome, Werner's syndrome and Rothmund-Thomson syndrome respectively) are mutated in distinct clinical disorders associated with cancer predisposition and/or premature aging. BLM forms part of a multienzyme compl...
متن کاملDNA End Resection: Facts and Mechanisms
DNA double-strand breaks (DSBs), which arise following exposure to a number of endogenous and exogenous agents, can be repaired by either the homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways in eukaryotic cells. A vital step in HR repair is DNA end resection, which generates a long 3' single-stranded DNA (ssDNA) tail that can invade the homologous DNA strand. The gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 26 شماره
صفحات -
تاریخ انتشار 2013